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Collecting enough samples is difficult in real applications. Several interval-based non-prob-
abilistic reliability methods have been reported. The key of these methods is to estimate sys-
tem non-probabilistic reliability index. In this paper, a new method is proposed to calculate 
system non-probabilistic reliability index. Kriging model is used to replace time-consuming 
simulations, and the efficient global optimization is used to determine the new training sam-
ples. A refinement learning function is proposed to determine the best component (or per-
formance function) during the iterative process. The proposed refinement learning function 
has considered two important factors: (1) the contributions of components to system non-
probabilistic reliability index, and (2) the accuracy of the Kriging model at current iteration. 
Two stopping criteria are given to terminate the algorithm. The system non-probabilistic 
index is finally calculated based on the Kriging model and Monte Carlo simulation. Two 
numerical examples are given to show the applicability of the proposed method.
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1. Introduction
Reliability analysis is performed to estimate the system prob-

ability of failure and reliability sensitivity with consideration of 
uncertainties[25, 19, 34]. Traditionally, uncertainties are often mod-
eled using random variables. To assess uncertainty effects on system 
performance, many probabilistic-based reliability analysis methods 
have been reported, such as the first/second order reliability methods 
(FORM/SORM)[20], saddle-point approximation-based method[6], 
and surrogate-based method [32]. These reliability methods are gen-
erally based on probability theory, i.e., the parameter uncertainties are 
represented using random variables. 

It is well known that sufficient samples (or data) are required to 
characterize a random variable. This requirement is difficult to satisfy 
in product early design stages. Therefore, existing probabilistic-based 
reliability analysis methods may encounter difficulties in this situa-
tion. To resolve the problem, non-probabilistic reliability methods 
are explored. Convex models were first suggested for uncertainty 
analysis by Ben-Haim and Elishakoff in 1990s [1, 8]; subsequently, 
Ben-Haim[1, 2] introduced non-probabilistic reliability principles 
and corresponding theories; He demonstrated that probabilistic-based 
methods are sensitive to probabilistic model. The small model error 

may lead to the large error of the result. Guo et al. [12] used interval 
variables to handle insufficient sample problems, and non-probabil-
istic reliability index and corresponding model were developed. The 
non-probabilistic reliability index, which is similar to the reliability 
index in FORM, can be used to measure the reliability of a system. 
Subsequently, Guo et al. [13] proposed three kinds of possible ap-
proaches to calculate non-probabilistic reliability index. Compared 
with probabilistic-based reliability methods, non-probabilistic reli-
ability provides a new way to assess the reliability of a structure, and 
has received much attentions in past two decades. Jiang et al. [17] pro-
posed a semi-analytic method to calculate non-probabilistic reliability 
index. Dong et al.[5] used interval non-probabilistic reliability method 
for analyzing jointed rock mass. Chen et al. [4] proposed a theoretical 
method for structures to conduct non-probabilistic reliability analysis. 
Jiang et al. [15] proposed a new method to model correlations among 
convex variables; then, the non-probabilistic reliability analysis was 
established. Xiao et al. [30] proposed a non-probabilistic reliability 
method for structural systems with interval variables; whereas the 
correlations among interval variables is determined by constraints. 
Nie and Li [22] proposed a direct integration method for systems with 
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non-probabilistic convex model. Yang et al. [33] proposed a convex 
model-based non-probabilistic reliability model for the bridge crane. 
Jiang et al. [14, 16]proposed a non-probabilistic reliability method for 
systems with correlated interval variables. 

In general, interval variables have obvious advantages to address 
insufficient information or samples because only little information is 
required to determine their bounds. Thus, interval-based non-proba-
bilistic reliability methods are useful compared with existing proba-
bilistic methods for insufficient sample problems. For interval-based 
non-probabilistic reliability analysis methods, the key is to estimate 
system non-probabilistic reliability index. Based on existing litera-
ture, there are generally two kinds of approaches that can be used, i.e., 
analytical approach and optimization-based approach. The former is 
computationally effective while its accuracy is low for highly nonlin-
ear performance functions. The latter is extremely accurate while its 
compactional efficiency is low. Furthermore, performance functions, 
in general, are often implicit functions with time-consuming simula-
tions in real applications. Thus, calculating non-probabilistic reliabil-
ity index for systems with multiple failure modes and implicit func-
tions is challenging, and existing approaches are generally difficult 
to implement. To address the problem, a new and effective method is 
proposed in this study to calculate non-probabilistic reliability index 
for systems with multiple failure modes and time-consuming simula-
tions. A refinement learning function is proposed to determine the best 
component (or failure mode) during iterative process, and two stop-
ping criteria are given to terminate the proposed algorithm. To avoid 
complex optimization process, the system non-probabilistic reliability 
index can be calculated based on the final kriging model and Monte 
Carlo simulation (MCS).

This paper is organized as follows. Section 2 gives a brief review of 
Kriging. Section 3 introduces interval-based non-probabilistic index 
model. The details of proposed method for calculating system non-
probabilistic reliability index are presented in section 4. Two numeri-
cal examples are investigated in section 5 to demonstrate the proposed 
method. Section 6 presents conclusion to close the paper.

2. Kriging model
Kriging model is a Gaussian process that has been widely used 

in reliability engineering [21, 24, 27, 28, 29, 31, 35, 36]. In general, 
Kriging model has two parts, i.e., a deterministic term and a stationary 
Gaussian process. It is expressed as follows [7]:

 g zT
sx f x x( ) = ( ) + ( )ββ  (1)

where ( ) ( ) ( ) ( )1 2, , ,
T

pf f f =  f x x x x are the regression func-

tions, ββ = β β β1 2, , , p
T

   
are the regression coefficients. ( )sz x  is 

a stochastic process with mean zero and covariance as follows:

 Cov x x x xi j i jR, ,( ) = ( )σ 2  (2)

where ( )Cov   is the covariance, σ 2  is the process variance, and 
( )R 

 is the correlation function. 

Given the training data, the unknown parameters ββ  and σ 2
 in 

Eqs. (1) and (2), can be estimated based on maximum likelihood esti-
mates, respectively. Finally, for a new unobserved point, x , the Krig-
ing prediction is a normal distribution random variable as follows:

 

 

g g gx x x( ) ( ) ( )



~ , µ σ 2  (3)

where µ
g x( )  and ( ) ( )2 Varg gσ =

 

x x  are Kriging mean prediction 
and Kriging variance, respectively. For further information of Kriging 
model, please see refs [3, 7, 9, 10] for details.

3. Non-probabilistic index model
Because of insufficient samples in product early design stages, 

probabilistic-based reliability methods are difficult to implement. 
Fortunately, interval variable can be used. An interval variable is de-
fined as follows:

 Y Y Y Y Y YL U L U,



 = ∈ ≤ ≤( )  (4)

where   is the real number, LY  and UY  are the lower and upper 
bounds of the interval variable, respectively. The midpoint Y and ra-
dius rY can be, respectively, calculated as follows.:

 
2

L UY YY +
= , 

2

U L
r Y YY −
=  (5)

Let ( )Z g= Y  with ( )1 2, , , nY Y Y=Y   be the system perfor-
mance function. Because ( )1 2, , , nY Y Y=Y  are interval variables, 

( )Z g= Y must be an interval variable with the midpoint Z and ra-
dius rZ , respectively. The non-probabilistic index η  can be defined 
as follows[12]:

 η =
Z
Z r  (6)

In Eq. (6), η >1  denotes that ( ), 1,2, ,L U
i i iY Y Y i n ∀ ∈ =   , the 

( ) 0g >Y . Then, the system is safe; η < −1  denotes that the system 
is failure; 1 1η− ≤ ≤  denotes that the system is in uncertain state. A 
larger value of η  means that the system is more reliable. Several 
studies have indicated that the non-probabilistic index  η  is appro-
priate to measure the state of structures. For more information of η , 
please see refs [12] and [16] for details. Based on Eqs. (5) and (6), the 
non-probabilistic index η  can also be rewritten as follows:

 η =
+( )
−( )

Z Z

Z Z

U L

U L
 (7)

According to Eq. (7), it is easy to know that the heart of calculating 
non-probabilistic index η  is determining the lower and upper bounds 
of Z . In general, if all interval variables are mutually independent, 
the lower and upper bounds of Z can be calculated as follows:

 
( )min max

. .

L U

L U

Z Z g

s t

=




≤ ≤

Y

Y Y Y

 (8)

In Eq. (8), several available optimization algorithms can be used 
to solve it. However, dependency of interval variables should be con-
sidered in real applications. For example, functional dependency can 
be modeled by using both inequality and equality constraints. When 
functional dependency of interval variables is considered, Eq. (8) 
should be extended as follows:
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where ( ) ( )0 1,2, ,jf i m≤ = Y  are inequality or equality con-
straints.

In practical engineering, a system may have multiple components 
or failure modes. For a series system with k components (or failure 
modes) ( )1,2, ,ig i k=  , the system non-probabilistic reliability in-
dex can be expressed as follows:

 
η η η ηsys k= ( )min , , ,1 2   (9)

where ηi i k=( )1 2, , ,
 is the thi non-probabilistic reliability index 

of the corresponding component ig . 

Similarly, the system non-probabilistic reliability index for a paral-
lel system can be given by:

 
η η η ηsys k= ( )max , , ,1 2   (10)

In general, ( )( )1,2, ,i iZ g i k= =Y  are often time-consuming im-
plicit performance functions in real applications. Thus, using tradi-
tional optimization methods for calculating system non-probabilistic 
reliability index is complex and may encounter difficulties. 

4. Proposed method for calculating system non-proba-
bilistic reliability index

It is noteworthy that when ( )( )1,2, ,i iZ g i k= =Y  are time-
consuming implicit functions, it is difficult to calculate system non-
probabilistic reliability index. To resolve the foregoing, the efficient 
global optimization (EGO)[18] based on Kriging model can be used 
to find the global minimum and maximum values of ( )ig Y , respec-
tively. The following steps are summarized. (1) constructing initial 
Kriging model based on a small number of training samples; (2) The 
EGO is used to find the best added training samples at each iteration; 
(3) The algorithm is terminated when the given stopping criterion is 
met. Subsequently, the global minimum or maximum values can be 
approximately determined based on the final Kriging model. The best 
added training samples at each iteration for finding the minimum and 
maximum values can be determined as follows [18]:

 
( )
( )

*
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*
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 (11)

where minEI  and maxEI  are the expected improvements with the fol-
lowing expressions[23]:
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where ϕ  and Φ  are the probability density function and cumulative 
density function of the standard normal distribution, respectively; 
µ
g y( )  

and σ
g y( )  

are the Kriging prediction and the standard devia-
tion of Kriging variance, respectively; 
g g g j sjmin max min max , , ,= ( ) =( )y 1 , and s  is the number of 

current training samples. Note that if the functional dependency of in-
terval variables is considered, Eq. (11) should be rewritten as follows:
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Intuitively, Kriging model can be used to approximately determine 
the minimum and maximum values for each component (or failure 
mode), i.e., minEI strategy is used to construct Kriging model g∆
for determining the global minimum value ( )( )min ming g∆≈  y , and 

maxEI strategy is used to construct the other Kriging model g∇ for the 
global maximum value ( )( )max maxg g∇≈  y . Based on the available 
values of ming and maxg , the non-probabilistic reliability index can 
be calculated. However, this manner is not effective if a system in-
volving k components (or failure modes). The reasons are as follows: 
(1) it is computationally expensive because all Kriging models are re-
quired to accurately construct for calculating system non-probabilistic 
reliability index; (2) it is not effective because single training sample 
is added at each iteration. To address these issues, we proposed an 
efficient method for calculating system non-probabilistic reliability 
index. 

For a series system with k  components (or failure modes), the con-
structed Kriging model and non-probabilistic reliability index of the 
thi  component are denoted as ig  and ηi , respectively. Based on Eq. 

(9), the system non-probabilistic reliability index can be calculated 
as η η η ηsys k≈ ( )min , , , 


1 2 . It is easy to know that the system non-

probabilistic reliability index is mainly dependent on the minimum 
value of  


η η η1 2, , , k( ) , the other indexes have no contribution to the 

system non-probabilistic reliability index. Thus, the component (or 
failure mode) with the smaller non-probabilistic index is more impor-
tant than others for a series system in the iterative process, and more 
training samples should be selected for it. Furthermore, more training 
samples should be selected for the component (or failure mode) with 
inaccurate Kriging model to yield accurate non-probabilistic reliabil-
ity index. Thus, we propose a strategy for finding the best component 
at each iteration, which is called as refinement learning function. The 
above-mentioned two cases are needed to combine in the proposed 
refinement learning function. Thus, the proposed refinement learning 
function for series systems is defined as follows:

 i SD g
i k

i i
*

, , ,
arg min= ( )( )
=1 2

 η  (15)

where { }* 1,2, ,i k∈   is the best component (or failure mode) that is 
needed to refine at current iteration, ηi  is the non-probabilistic reli-
ability index of the thi  component at current iteration, and ( )iSD g

 is used to measure the variance of ηi  caused by ig . Furthermore, 
the optimization models in Eqs. (11) and (14) are difficult to directly 
solve. Thus, the EGO combined with the MCS are used to improve 
computational efficiency. Suppose that a MC candidate sample set 
with sn  samples is denoted by{ }cy , the ( )iSD g  is defined as fol-
lows:

 SD gi g
i

g
i

g ci i i


  

( ) = ( ) + ( )( ) { }( ) 
( ) ( )σ σy y ymin* max* E Var     (16)



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 3, 2021 501

where y ymin* arg mini
i cg( ) = { }( ) , y ymax* arg maxi

i cg( ) = { }( ) , E ( )  is 

the expectation operator, Var
ig  is the Kriging variance of the Kriging 

model ig  with Var
 g c g ci i

y y{ }( ) = { }( )σ , and 
( ) ( ) { }min* max*,i i

c∈y y y  .

Based on the proposed refinement learning function, the best com-
ponent (or failure mode) *i  can be determined at each iteration. Two 
important factors having a major effect on the system non-probabilis-
tic reliability index are considered, i.e., (1) the component (or failure 
mode) contribution to the system non-probabilistic reliability index, 
and (2) the accuracy of the Kriging models. The selected component 
(or failure mode) at each iteration has the following features, i.e., (1) 
it has generally the smaller non-probabilistic index than most com-
ponents, (2) its Kriging model is generally less accurate than others, 
and (3) for both. Since non-probabilistic reliability index is dependent 
on the global minimum and maximum values of performance func-
tion, the best two added training samples are selected at each iteration 
based on the EGO. These two samples have the maximum expected 
improvement on current minimum value and maximum value, respec-
tively. These two training samples for the *thi  component can be se-
lected as follows:
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∗( ) = ( ) =( )y 1 2 , and *i
s is the number of 

available training samples of the *thi component.

With the added two training samples at each iteration, the overall 
computational time is reduced compared with adding single sample 
point, and the Kriging model *i

g
 
is also refined. When the given 

stopping criteria are met, the proposed algorithm is terminated. The 
stopping criteria are given by:

 max EI and max EImin max
i

c
i

c

∗ ∗( ) ( ){ }( )
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y yε1 ≤≤ ε2  (18)

where ε ε1 2,  are two given small positive numbers such as
ε ε1 2

210= = − . Note that if the functional dependency of interval vari-
ables is considered, Eq. (11) should be rewritten as follows:
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where { }my
 
is the MC candidate set that satisfies the constraints, and

{ } { }m c∈y y .

Similarly, the system non-probabilistic reliability index for a paral-
lel system is calculated as η η η ηsys k≈ ( )max , , , 


1 2 ; thus, the refine-

ment learning function is defined as follows:

 i SD g
i k

i i
*

, , ,
arg max= × ( )( )
=1 2

 η  (20)

Based on proposed refinement learning functions in Eqs. (15) and 
(20), the component (or failure mode) with the smaller/larger non-
probabilistic index and inaccurate kriging model will be generally se-
lected at the current iteration. It is noteworthy that the best component 

*i  is changeable instead of a determined value. The proposed method 
for calculating system non-probabilistic reliability index is summa-
rized as follows:

Step 1: A large number of uniform distribution samples are generated 
within the interval variables using the MCS, and the generated MC 
sample set with sn samples is denoted as{ }cy ; 

Step 2: Finding the samples satisfy the constraints 
( ) ( )0 1,2, ,jf j m≤ = y . The sample set is denoted as { }my , and

{ } { }m c∈y y ;

Step 3: Selecting a small number of initial training samples { }sy from 
{ }my , and calculating corresponding responses { } { }( )s s=z g y , 
 where ( )1 2, , , kg g g= g . Subsequently, constructing initial Kriging 
models ( )( )1,2, ,i iZ g i k= =


Y based on { }{ }( ),s sy z individually. 

Step 4: Using the proposed refinement learning functions in Eq.(15) 
or Eq.(20) to find the best component (or failure mode). For a series 
system, Eq. (15) is used; for a parallel system, Eq. (20) is used.

Step 5: Using the Eqs. (17) or (19) to find the best two added train-
ing samples for the *thi component (or failure mode), and the number 
of training samples of the *thi component is updated as * * 2

i i
s s= + ; 

then, the corresponding Kriging model of the *thi component (or fail-
ure mode), *i

g , is refined with the added two training samples.

Step 6: Checking the stopping criteria in Eq. (18). If they are met, 
proceed to Step 7; otherwise, goes back to step 4. 

Step 7: Calculating non-probabilistic reliability index of each compo-
nent (or failure mode) based on the final constructed Kriging models, 
these indexes are 

ηi i k, , , ,={ }1 2 .

Step 8: The system non-probabilistic reliability index is estimated as 
η η η ηsys k≈ ( )min , , , 


1 2  

and η η η ηsys k≈ ( )max , , , 


1 2  for series 
and parallel systems, respectively. 

4. Numerical examples
In this section, two numeral examples are investigated to show the 

applicability of the proposed method. This first is a parallel system; 
the second is a cantilever with three failure modes and is a series sys-
tem. For each example, the system non-probabilistic reliability index 
calculated based on the true performance functions is reported as the 
benchmark for accuracy comparisons. It is noteworthy that all per-
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formance functions in the numerical examples are viewed as implicit 
functions for the proposed method. 

Example 1–a mathematical problem 
Suppose that a parallel system has two performance functions as 

follows [11]:

 
g Y Y Y Y Y

g Y Y Y Y

1 1 2 2 1
2

1
4

2 1 2 1 2

2 0 1 0 2, exp . .

,

( ) = − + −( ) + ( )
( ) = −





 α
 (21)

1Y  and 2Y  are two independent interval variables with [ ]1 2,2Y ∈ −
and [ ]2 2,2Y ∈ − . Two cases are respectively considered: (1) the func-
tional dependency is not involved, and (2) the functional dependency 
is modeled as 1 2 0.5 0Y Y+ − ≥ . The results of system non-probabil-
istic reliability indexes under different α  are shown in Table 1 and 
Fig. 1, respectively. 

Fig. 1 System non-probabilistic reliability index under different α

In this example, the number of initial training samples and MC 
candidate samples are 6 and 53 10× , respectively; the parameters in 
stopping criteria are set as ε ε1 2

210= = − . In Table 1, ηsys  
and ηsys

*

denote the system non-probabilistic reliability indexes without or with 
considering functional dependency, respectively. The results based on 
the real performance functions and existing optimization algorithms 
are viewed as the benchmark for accuracy comparisons. From Table 
1, it shows that the proposed method yields acceptable accuracy level 
results compared with the true results. The errors come from two as-
pects: (1) the constructed final Kriging models, and (2) using MC 
candidate samples to approximately determined the lower and upper 
bounds of responses. The proposed method is effective and easy to 
implement because it does not involve complex optimization process. 

Note that all performance functions are viewed as implicit functions 
and replaced using Kriging models in the proposed method. Fur-
thermore, it is observed in Table 1 that the system non-probabilistic 
reliability index with/without considering functional dependency is 
different. Thus, functional dependency has obvious effect on system 
non-probabilistic reliability index. 

The details of one iterative process with considering 
functional dependency under α =8 are shown in Table 2 
and Fig. 2, respectively. From Table 2, it is easy to know 
that the system non-probabilistic reliability index is 
controlled by component (i.e., failure mode) 2, whereas 
component (i.e., failure mode) 1 has almost no contribu-
tion to it. The proposed method is terminated after four 
iterations, one time of iteration is for component (fail-
ure mode) 1, and three times are for component (failure 
mode) 2. Thus, the proposed refinement learning func-
tion can properly identify key component (failure mode) 
that has important contribution to system non-probabil-
istic reliability index. It combines two important factors 
to properly improve computational efficiency. 

Example 2–a cantilever system
A cantilever beam with an external load is shown in Fig. 3. This is a 

series system with the following three performance functions [26]:

 

( )

( )

( )

3

3

2

4, , , , 4.0

6, , , 4000.0

, 25000.0

Disp

Stress

Moment

PLg L P E B H
EBH

PLg L P B H
BH

g L P PL

= −

= −

= −

 (22)

where H  is the cross-sectional height, B  is the cross-sectional 
width, L  is the length of the beam, E  is the young’s modulus with 

Table 1. System non-probabilistic reliability index under different α

Non-probability
reliability index 4α = 5α = 6α = 7α = 8α =

Proposed method

ηsys 1.325 1.325 1.504 1.753 2.007

ηsys
∗ 1.401 1.404 1.589 1.866 2.154

True value

ηsys 1.324 1.324 1.500 1.750 2.000

ηsys
∗ 1.398 1.398 1.571 1.857 2.143

Table 2. Detailed information of one iterative process α =8

No. of iterations 0 1 2 3 4

η1
* 1.4047 1.4047 1.4045 1.4045 1.4045

η2
* 3.1082 2.1549 2.1549 2.1548 2.1538

ηsys
* 3.1082 2.5149 2.1549 2.1548 2.1538

Fig. 2. Details of one iterative process under α =8
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the precise value 1×107, and P  is the applied load. The details of 
these interval variables are listed in Table 3.

Fig. 3. A cantilever beam

In this example, the number of initial training samples and MC 
candidate samples are 12 and 55 10× , respectively; the parameters 
of stopping criteria are set as 2

1 2 10ε ε −= = . The benchmark result 
of system non-probabilistic reliability index from the real perform-
ance functions is about 0.011. The result from the proposed method 
is 0.053. Considering the definition of non-probabilistic reliability in-
dex, the error between the proposed method and the benchmark can 
be ignored for making decision. 

One iterative process of example 2 is shown in Table 4 and Fig. 4, 
respectively. Based on the Table 4 and Fig. 4, both indicate that the 
system non-probabilistic reliability index is mainly dependent on 
component 1, i.e., the first performance function, whereas the other 
two components (failure modes) have no contribution to it. The pro-
posed method is terminated after five times of iterations, one is for 
components (failure modes) 2 and 3, respectively, and three are for 
component (failure mode) 1. Thus, the proposed refinement learning 
function has properly identified the key component (failure mode) 
that has important contribution to system non-probabilistic reliabil-
ity index. Furthermore, the components (failure modes) with inaccu-
rate Kriging models have also considered in the proposed refinement 
learning function. Thus, it provides a useful manner to balance above-
mentioned two factors to some extent. 

5. Conclusions
In practical engineering, it may be difficult to collect sufficient sam-

ples for all variables, especially for a product in its early design 
stage. Thus, probabilistic-based reliability analysis methods may 
not be applicable because they require sufficient samples to char-
acterize random variables. Interval variable has obvious advan-
tages for addressing insufficient sample problems. In this paper, 
an efficient method is proposed for calculating system non-prob-
abilistic reliability index. The refinement learning functions are 
developed to determine the best component (failure mode) for 
series and parallel systems, respectively. Two important factors 
that have a major effect on the system non-probabilistic reliabil-
ity index have been considered, i.e., (1) the component (failure 
mode) contribution to the system non-probabilistic reliability in-
dex, and (2) the accuracy of the Kriging models. When the best 
component (failure mode) has been identified at each iteration, 
two training samples are selected to refine the corresponding 

Kriging model, which can reduce overall computational time. The EGO 
combined with MCS can be used to improve computational efficiency. 
Two examples show that the proposed method can yield accurate results 
and is generally effective for systems with multiple failure models and 
implicit functions. Based on the proposed method, it does not require to 
accurately construct Kriging model for each component (failure mode). 
In general, a larger system non-probabilistic index indicates that the 
system is more reliable.

It should be noted that the functional dependency is considered in 
the study. It is different from the correlation among interval variables. 
Furthermore, because the proposed method is based on the Kriging 
model, it is difficult to use for high-dimensional problems due to the 
“curse of dimensionality”. The future work will be focused on ad-
dressing these problems. 
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Table 3. Detailed information of interval variables

Interval variables L B H P

Lower bound 180 3.6 2.7 90

Upper bound 220 4.4 3.3 110

Table 4. Detailed information of one iterative process (example 2)

No. of iterations 0 1 2 3 4 5

η1 0.355 0.070 0.058 0.058 0.058 0.053

η2 0.350 0.350 0.350 0.169 0.169 0.169

η3 1.201 1.201 1.201 1.201 1.203 1.203

ηsys 0.350 0.070 0.058 0.058 0.058 0.053

Fig. 4. Details of one iterative process (example 2)
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